Sistema de Referencia Inercial

Se denominan sistemas de referencia inerciales a aquellos en los que se cumple el principio de inercia: para que un cuerpo posea aceleración ha de actuar sobre él una fuerza exterior. En estos sistemas se cumplen, por extensión los otros dos principios de la dinámica de Newton. 
El la figura inferior se representa un tren que viaja a velocidad constante. En el interior de un vagón hay una caja. 

El movimiento de la caja, es descrito por cada observador O y O' de diferente manera. Como ambos sistemas de referencia son inerciales, para explicar el movimiento de la caja, no necesitan echar mano de ninguna fuerza exterior. 
Si la caja acelera es porque hay una fuerza que actúa sobre ella; si no acelera, no hay ninguna fuerza actuando sobre ella.


En mecánica newtoniana, un sistema de referencia inercial es un sistema de referencia en el que las leyes del movimiento cumplen las leyes de Newton y, por tanto, la variación del momento lineal del sistema es igual a las fuerzas reales sobre el sistema, es decir un sistema en el que:


En cambio la descripción newtoniana de un sistema no-inercial requiere la introducción de fuerzas ficticias o inerciales de tal manera que:


Esto lleva a una definción alternativa, un sistema inercial es aquel en que el movimiento de las partículas puede describirse empleando sólo fuerzas reales sin necesidad de considerar fuerzas ficticias.
El concepto de sistema de referencia inercial también es aplicable a teorías más generales que la mecánica newtoniana. Así, en la Teoría de la relatividad especial también se pueden introducir los sistemas inerciales. Aunque en relatividad especial la caracterización matemática no coincide con la que se da en mecánica newtoniana, debido a que la segunda ley de Newton, tal como la formuló, no se cumple en la Teoría de la relatividad.

Sistema de Referencia Inerciales y no Inerciales

Las leyes de Newton constituyeron un éxito intelectual notable, que podía explicar una amplia variedad de sistemas reales. En esos sistemas las fuerzas que ejercen las partículas entre si, satisfacen dichas leyes. Sin embargo, existen sistemas acelerados o en rotación donde las leyes de Newton aplicadas a las fuerzas ejercidas por las partículas no se cumplen estrictamente. Los sistemas de referencia inerciales son aquellos en los que se cumplen las leyes de Newton usando sólo las fuerzas reales (no-ficticias) que ejercen entre sí las partículas del sistema.
Los sistemas de referencia no inerciales pueden tratarse siguiendo dos posibilidades lógicas:
Introduciendo las llamadas fuerzas ficticias o inerciales, que no son realizadas concretamente por ninguna partícula y tiene que ver con la rotación o aceleración del origen del sistema de referencia.
Generalizando las leyes de Newton a una forma más general que pueda ser aplicable a cualquier sistema de referencia. Esta segunda posiblidad es precisamente el camino que siguieron formulaciones más generales de la mecánica clásica como la mecánica lagrangiana y la mecánica hamiltoniana.
La existencia de esta segunda posibilidad lleva a buscar una caracterización más general de los sistemas de referencia inerciales, que sea lógicamente dependiente de las leyes de Newton. De hecho, en mecánica clásica y teoría de la relatividad especial, los sistemas inerciales pueden ser caracterizados de forma muy sencilla: un sistema inercial es aquel en el que los símbolos de Christoffel obtenidos a partir de la función lagrangiana se anulan.
En un sistema inercial no aparecen fuerzas ficticias para describir el movimiento de las partículas observadas, y toda variación de la trayectoria tiene que tener una fuerza real que la provoca.



Características de los Sistemas Inerciales 

  • El punto de referencia es arbitrario, dado un sistema de referencia inercial, cualquier otro sistema desplazado respecto al primero a una distancia fija sigue siendo inercial.
  • La orientación de los ejes es arbitraria, dado un sistema de referencia inercial, cualquier otro sistema de referencia con otra orientación distinta del primero, sigue siendo inercial.
  • Desplazamiento a velocidad lineal constante, dado un sistema de referencia inercial, cualquier otro que se desplace con velocidad lineal y constante, sigue siendo inercial.

Por combinación de los tres casos anteriores, tenemos que cualquier sistema de referencia desplazado respecto a uno inercial, girado y que se mueva a velocidad lineal y constante, sigue siendo inercial.

Sistemas de Referencia no Inerciales 

  • Dado un sistema de referencia inercial, cualquier otro que se mueva con aceleración lineal respecto al primero es no inercial.
  • Dado un sistema de referencia inercial, cualquier otro cuyos ejes roten, con velocidad de rotación constante o variable, respecto a los del primero, no es inercial.

En un sistema en rotación, o moviéndose con aceleración respecto a un sistema inercial da lugar a un sistema de referencia no inercial, y en él no se cumplen las leyes de Newton. En un sistema no-inercial para justificar el movimiento además de las fuerzas reales necesitamos introducir fuerzas ficticias que dependen del tipo de no-inercialidad del sistema.
Estas fuerzas no son ejercidas por ningún cuerpo y en consecuencia la tercera ley de Newton no se aplica en todas aquellas fuerzas ficticias introducidas por un observador no inercial. Algunas fuerzas ficticias o de inercia son la fuerza de Coriolis y la fuerza centrífuga.