Fuerza de Rozamiento

Se define como fuerza de rozamiento o fuerza de fricción, a la fuerza entre dos superficies en contacto, a aquella que se opone al movimiento entre ambas superficies (fuerza de fricción dinámica) o a la fuerza que se opone al inicio del deslizamiento (fuerza de fricción estática). Se genera debido a las imperfecciones, mayormente microscópicas, entre las superficies en contacto. Estas imperfecciones hacen que la fuerza perpendicular R entre ambas superficies no lo sea perfectamente, si no que forme un ángulo φ con la normal N (el ángulo de rozamiento). Por tanto, la fuerza resultante se compone de la fuerza normal N (perpendicular a las superficies en contacto) y de la fuerza de rozamiento F, paralela a las superficies en contacto.



Por ejemplo si un cuerpo se encuentra apoyado sobre una superficie horizontal en dónde no hay más fuerzas además del peso y la normal, entonces no hay fuerza de rozamiento estático. Si aplicamos una fuerza F1 y el cuerpo no se mueve, la fuerza de rozamiento es de valor – F1. Si aplicamos F2 y no se mueve, en este caso la fuerza de rozamiento vale –F2

Existe un valor de fuerza de rozamiento estático máximo a partir del cual cualquier aumento en la fuerza aplicada pone en movimiento al cuerpo. Se denomina fuerza de rozamiento estático máxima y depende de la normal y de un número denominado coeficiente de rozamiento estático (μe).

Fuerza de Rozamiento entre superficies de dos sólidos

En el rozamiento entre cuerpos sólidos se ha observado los siguientes hechos empíricos:
La fuerza de rozamiento tiene dirección paralela a la superficie de apoyo.
El coeficiente de rozamiento depende exclusivamente de la naturaleza de los cuerpos en contacto, así como del estado en que se encuentren sus superficies.
La fuerza máxima de rozamiento es directamente proporcional a la fuerza normal que actúa entre las superficies de contacto.

Para un mismo par de cuerpos (superficies de contacto), el rozamiento es mayor un instante antes de que comience el movimiento que cuando ya ha comenzado (estático Vs. cinético).
El rozamiento puede variar en una medida mucho menor debido a otros factores:
El coeficiente de rozamiento es prácticamente independiente del área de las superficies de contacto.
El coeficiente de rozamiento cinético es prácticamente independiente de la velocidad relativa entre los móviles.

La fuerza de rozamiento puede aumentar ligeramente si los cuerpos llevan mucho tiempo sin moverse uno respecto del otro ya que pueden sufrir atascamiento entre sí.
Algunos autores sintetizan las leyes del comportamiento de la fricción en los siguientes dos postulados básicos:
La resistencia al deslizamiento tangencial entre dos cuerpos es proporcional a la fuerza normal ejercida entre los mismos.
La resistencia al deslizamiento tangencial entre dos cuerpos es independiente de las dimensiones de contacto entre ambos.

La segunda ley puede ilustrarse arrastrando un bloque sobre una superficie plana. La fuerza de arrastre será la misma aunque el bloque descanse sobre la cara ancha o sobre un borde más angosto. Estas leyes fueron establecidas primeramente por Leonardo da Vinci al final del siglo XV, olvidándose después durante largo tiempo; posteriormente fueron redescubiertas por el ingeniero francés Amontons en 1699. Frecuentemente se les denomina también leyes de Amontons.

Tipos de Fuerza de Fricción

Existen dos tipos de rozamiento o fricción, la fricción estática (FE) y la fricción dinámica (FD). El primero es la resistencia que se debe superar para poner en movimiento un cuerpo con respecto a otro que se encuentra en contacto. El segundo, es la resistencia, de magnitud considerada constante, que se opone al movimiento pero una vez que éste ya comenzó. En resumen, lo que diferencia a un roce con el otro, es que el estático actúa cuando los cuerpos están en reposo relativo en tanto que el dinámico lo hace cuando ya están en movimiento.
La fuerza de fricción estática, necesaria para vencer la fricción homóloga, es siempre menor o igual al coeficiente de rozamiento entre los dos objetos (número medido empíricamente y que se encuentra tabulado) multiplicado por la fuerza normal. La fuerza cinética, en cambio, es igual al coeficiente de rozamiento dinámico, denotado por la letra griega , por la normal en todo instante.

Fuerza de Fricción Estática

Es la fuerza que se opone al inicio del deslizamiento. Sobre un cuerpo en reposo al que se aplica una fuerza horizontal F, intervienen cuatro fuerzas:

F: la fuerza aplicada.
Fr: la fuerza de rozamiento entre la superficie de apoyo y el cuerpo, y que se opone al deslizamiento.
P: el peso del propio cuerpo, igual a su masa por la aceleración de la gravedad.
N: la fuerza normal, con la que la superficie reacciona sobre el cuerpo sosteniéndolo.
Dado que el cuerpo está en reposo la fuerza aplicada y la fuerza de rozamiento son iguales, y el peso del cuerpo y la normal:

Se sabe que el peso del cuerpo P es el producto de su masa por la aceleración de la gravedad (g), y que la fuerza de rozamiento es el coeficiente estático por la normal:

La fuerza horizontal F máxima que se puede aplicar a un cuerpo en reposo es igual al coeficiente de rozamiento estático por su masa y por la aceleración de la gravedad.



Fuerza de Rozamiento Dinámico

Dado un cuerpo en movimiento sobre una superficie horizontal,deben considerarse las siguientes fuerzas:


F: la fuerza aplicada.
Fr: la fuerza de rozamiento entre la superficie de apoyo y el cuerpo, y que se opone al deslizamiento.
Fi: fuerza de inercia, que se opone a la aceleración de cuerpo, y que es igual a la masa del cuerpo m por la aceleración que sufre a.
P: el peso del propio cuerpo, igual a su masa por la aceleración de la gravedad.
N: la fuerza normal, que la superficie hace sobre el cuerpo sosteniéndolo.
Como equilibrio dinámico, se puede establecer que: 



Es decir, la fuerza resultante F aplicada a un cuerpo es igual a la fuerza de rozamiento Fr mas la fuerza de inercia Fi que el cuerpo opone a ser acelerado. De lo que también se puede deducir:




Rozamiento en un Plano Inclinado 

Si sobre una línea horizontal r, se tiene un plano inclinado un ángulo  \alpha \, , y sobre este plano inclinado se coloca un cuerpo con rozamiento, se tendrán tres fuerzas que intervienen:
P:  el peso del cuerpo vertical hacia abajo según la recta u, y con un valor igual a su masa por la aceleración de la gravedad: P = mg.
N:  la fuerza normal que hace el plano sobre el cuerpo, perpendicular al plano inclinado, según la recta t
Fr:  la fuerza de rozamiento entre el plano y el cuerpo, paralela al plano inclinado y que se opone a su deslizamiento.
Si el cuerpo está en equilibrio, no se desliza, la suma vectorial de estas tres fuerzas es cero:



 \mathbf{P} +  \mathbf{F}_r +  \mathbf{N} = 0

Lo que gráficamente seria un triángulo cerrado formado por estas tres fuerzas, puestas una a continuación de otra, como se ve en la figura.

Si el peso P del cuerpo se descompone en dos componentes: Pn, peso normal, perpendicular al plano, que es la componente del peso que el plano inclinado soporta y Pt, peso tangencial, que es la componente del peso tangencial al plano inclinado y que tiende a desplazar el cuerpo descendentemente por el plano inclinado. Se puede ver que el Pn se opone a la normal, N, y el peso tangencial Pt a la fuerza de rozamiento Fr.
Se puede decir que el Pn es la fuerza que el cuerpo ejerce sobre el plano inclinado y la normal, N, es la fuerza que el plano inclinado hace sobre el cuerpo impidiendo que se hunda, Pn = N para que este en equilibrio. El peso tangencial Pt es la fuerza que hace que el cuerpo tienda a deslizarse por el plano y Fr es la fuerza de rozamiento que impide que el cuerpo se deslice, para que este en equilibrio Pt = Fr.


 P_n = N \,
 P_t = F_r \,
Cuando el cuerpo está en equilibrio estas dos ecuaciones determinan la igualdad de fuerzas, también es necesario saber que:
 F_r  = \mu_e N \,
 P = mg \,
y que la descomposición del peso es:
 P_n = P \cos ( \alpha ) \,
 P_t = P \sin ( \alpha ) \,
Con lo que se determinan las condiciones del equilibrio de un cuerpo en un plano inclinado con el que tiene fricción. Es de destacar la siguiente relación:
 P \cos ( \alpha ) = N \,
 P \sin ( \alpha ) = \mu_e N \,
Haciendo la sustitución de N:
 P \sin ( \alpha ) = \mu_e P \cos ( \alpha ) \,
que da finalmente como resultado:
 \frac{\sin ( \alpha ) }{\cos ( \alpha ) } = \tan ( \alpha ) = \mu_e \,

El coeficiente de rozamiento estático es igual a la tangente del ángulo del plano inclinado, en el que el cuerpo se mantiene en equilibrio sin deslizar, ello permite calcular los distintos coeficientes de rozamiento, simplemente colocando un cuerpo de un material concreto sobre un plano inclinado del material con el que se pretende calcular su coeficiente de rozamiento, inclinando el plano progresivamente se observa el momento en el que el cuerpo comienza a deslizarse, la tangente de este ángulo es el valor del coeficiente de rozamiento. Del mismo modo conocido el coeficiente de rozamiento entre dos materiales podemos saber el ángulo máximo de inclinación que puede soportar sin deslizar.