Centro de Gravedad

El centro de gravedad es el punto de aplicación de la resultante de todas las fuerzas de gravedad que actúan sobre las distintas porciones materiales de un cuerpo, de tal forma que el momento respecto a cualquier punto de esta resultante aplicada en el centro de gravedad es el mismo que el producido por los pesos de todas las masas materiales que constituyen dicho cuerpo

En otras palabras, el centro de gravedad de un cuerpo es el punto respecto al cual las fuerzas que la gravedad ejerce sobre los diferentes puntos materiales que constituyen el cuerpo producen un momento resultante nulo.
El c.g. de un cuerpo no corresponde necesariamente a un punto material del cuerpo. Así, el c.g. de una esfera hueca está situado en el centro de la esfera que, obviamente, no pertenece al cuerpo.


Propiedades de Centro de Gravedad y Tablas
Un objeto apoyado sobre una base plana estará en equilibrio estable si la vertical que pasa por el centro de gravedad corta a la base de apoyo. Lo expresamos diciendo que el CG cae dentro de la base de apoyo.
Además, si el cuerpo se aleja algo de la posición de equilibrio, aparecerá un momento restaurador y recuperará la posición de equilibrio inicial. No obstante, si se aleja más de la posición de equilibrio, el centro de gravedad puede caer fuera de la
base de apoyo y, en estas condiciones, no habrá un momento restaurador y el cuerpo abandona definitivamente la posición de equilibrio inicial mediante una rotación que le llevará a una nueva posición de equilibrio.


Calculo Del Centro de Gravedad

El centro de gravedad de un cuerpo K viene dado por el único vector que cumple que:


Para un campo gravitatorio uniforme, es decir, uno en que el vector de campo gravitatorio g es el mismo en todos los puntos, la definición anterior se reduce a una equivalente a la definición del centro de masas.


Para el campo gravitatorio creado por un cuerpo másico cuya distancia al objeto considerado sea muy grande comparado con las dimensiones del cuerpo másico y del propio objeto, el centro de gravedad del objeto vienen dado por:


Teoremas de Pappus-Guldin:

TEOREMA I. El área de una superficie de revolución es igual a la longitud de la curva generatriz multiplicada por la distancia recorrida por el centroide de dicha curva al momento de generar la superficie.

TEOREMA II. El volumen de un cuerpo de revolución es igual al área generatriz multiplicada por la distancia recorrida por el centroide del área al momento de generar el cuerpo.