Estática

La estática es la rama de la mecánica clásica que analiza las cargas (fuerza, par / momento) y estudia el equilibrio de fuerzas en los sistemas físicos en equilibrio estático, es decir, en un estado en el que las posiciones relativas de los subsistemas no varían con el tiempo. La primera ley de Newton implica que la red de la fuerza y el par neto (también conocido como momento de fuerza) de cada organismo en el sistema es igual a cero. De esta limitación pueden derivarse cantidades como la carga o la presión. La red de fuerzas de igual a cero se conoce como la primera condición de equilibrio, y el par neto igual a cero se conoce como la segunda condición de equilibrio.



Análisis del Equilibrio
La estática proporciona, mediante el empleo de la mecánica del sólido rígido, solución a los problemas denominados isostáticos. En estos problemas, es suficiente planear las condiciones básicas de equilibrio, que son:


  1. El resultado de la suma de fuerzas es nulo.
  2. El resultado de la suma de momentos respecto a un punto es nulo.


  • Estas dos condiciones, mediante el álgebra vectorial, se convierten en un sistema de ecuaciones; la resolución de este sistema de ecuaciones es la solución de la condición de equilibrio.
  • Existen métodos de resolución de este tipo de problemas estáticos mediante gráficos, heredados de los tiempos en que la complejidad de la resolución de sistemas de ecuaciones se evitaba mediante la geometría, si bien actualmente se tiende al cálculo por ordenador.

Para la resolución de problemas hiperestáticos (aquellos en los que el equilibrio se puede alcanzar con distintas combinaciones de esfuerzos) es necesario considerar ecuaciones de compatibilidad. Dichas ecuaciones adicionales de compatibilidad se obtienen mediante la introducción de deformaciones y tensiones internas asociadas a las deformaciones mediante los métodos de la mecánica de sólidos deformables, que es una ampliación de la mecánica del sólido rígido que, además, da cuenta de la deformabilidad de los sólidos y sus efectos internos.



Suma de Fuerzas
Cuando sobre un cuerpo o sólido rígido actúan varias fuerzas que se aplican en el mismo punto, el cálculo de la fuerza resultante resulta trivial: basta sumarlas vectorialmente y aplicar el vector resultante en el punto común de aplicación.
Sin embargo, cuando existen fuerzas con puntos de aplicación diferentes es necesario determinar el punto de aplicación de la fuerza resultante. Para fuerzas no paralelas esto puede hacerse sumando las fuerzas dos a dos. Para ello se consideran dos de las fuerzas trazan rectas prolongando las fuerzas en ambos sentidos y buscando su intersección. Esa intersección será un punto de paso de la fuerza suma de las dos. A continuación se substituyen las dos fuerzas por una única fuerza vectorial suma de las dos anteriores aplicada en el punto de intersección. Esto se repite n-1 veces para un sistema de n fuerzas y se obtiene el punto de paso de la resultante.



Análisis Estructural
La estática se utiliza en el análisis de las estructuras, por ejemplo, en arquitectura e ingeniería estructural y la ingeniería civil. La resistencia de los materiales es un campo relacionado de la mecánica que depende en gran medida de la aplicación del equilibrio estático. Un concepto clave es el centro de gravedad de un cuerpo en reposo, que constituye un punto imaginario en el que reside toda la masa de un cuerpo. La posición del punto relativo a los fundamentos sobre los cuales se encuentra un cuerpo determina su estabilidad a los pequeños movimientos. Si el centro de gravedad se sitúa fuera de las bases y, a continuación, el cuerpo es inestable porque hay un par que actúa: cualquier pequeña perturbación hará caer al cuerpo. Si el centro de gravedad cae dentro de las bases, el cuerpo es estable, ya que no actúa sobre el par neto del cuerpo. Si el centro de gravedad coincide con los fundamentos, entonces el cuerpo se dice que es metaestable.

Para poder saber el esfuerzo interno o la tensión mecánica que están soportando algunas partes de una estructura resistente, pueden usarse frecuentemente dos medios de cálculo:

  • La comprobación por nudos.
  • La comprobación por secciones.

Para lograr obtener cualquiera de estas dos comprobaciones se debe tomar en cuenta la sumatoria de fuerzas externas en la estructura (fuerzas en x y en y), para luego comenzar con la comprobación por nudos o por sección. Aunque en la práctica no siempre es posible analizar una estructura resistente exclusivamente mediante las ecuaciones de la estática, y en esos casos deben usarse métodos más generales de resistencia de materiales, teoría de la elasticidad, mecánica de sólidos deformables y técnicas numéricas para resolver las ecuaciones a las que esos métodos llevan, como el popular método de los elementos finitos.